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COMMENT 

1/N expansion for the Gaussian potential 

Ashok Chatterjee 
Department of Theoretical Physics, Indian Association for the Cultivation of Science, 
Jadavpur, Calcutta 700032, India 

Received 19 February 1985 

Abstract. The method of large-N expansion has been applied to an attractive radial 
Gaussian potential to obtain its bound state energy levels. It has been shown that the 
shifted 1/ N expansion technique provides a better approximation than the method of 
unshifted 1/ N expansion and yields energy values which are in good agreement with the 
accurate numerical and analytic results. 

The solution of the Schrodinger equation with an attractive radial Gaussian potential 
of the form V ( r )  = -A exp(-hr2), the interest in which was evoked by the work of 
Buck et a1 (1977) on the determination of a-a  scattering phase shifts using a local 
Gaussian potential as a model for the nucleus-nucleus interaction, has received 
significant attention in recent years. The energy eigenvalues of such an attractive 
Gaussian potential were obtained first by Buck (1977) by direct numerical integration 
and then by Stephenson ( 1977) by the Liouville-Green uniform asymptotic method. 
Bessis et a1 (1982) have determined its bound state energies fairly accurately using a 
perturbational and variational treatment on a conveniently chosen basis of transformed 
Jacobi functions. More accurate values have been obtained by Lai (1983) by using 
higher-order perturbation theory combined with hypervirial-Pade analysis. These 
results are in excellent agreement with the numerical values reported later by Crandall 
(1983). Recently, Cohen (1984) has proposed a simple method to calculate the bound 
state energies of the Gaussian potential from a first-order perturbation theory based 
on a scaled harmonic oscillator model. This method, however, fails to yield the true 
upper bounds for higher particle levels. 

In the interim, the semiclassical large N expansion has emerged as a very useful 
technique for providing energy eigenvalues for bound states of the quantal systems 
with surprisingly good accuracy (Mlodinow and Papanicolaou 1980, 1981, Mlodinow 
and Shatz 1984, Chatterjee 1985 and references therein). One palpable advantage of 
this scheme over the ordinary Rayleigh-Schrodinger perturbation theory is that unlike 
the perturbation theory which requires a partitioning of the Hamiltonian into two parts, 
one being so small it can be treated as a small perturbation, the method of large 
N expansion uses 1/ k = 1/(  N + 21) as the expansion parameter, where N is the spatial 
dimensionality and 1, the angular momentum and hence preserves the potentiality of 
finding application in the strong coupling problems for which the usual perturbative 
treatments fail (Witten 1979). Notwithstanding the proven success of the 1 / N  
expansion in dealing with a number of potential problems, the expansion is at times 
plagued with slow convergence, particularly for the higher excited states. To avoid 
this difficulty, Sukhatme and Imbo (1983) have introduced what they have called the 
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shifted 1 /  N expansion which brings in an extra degree of freedom ‘a’  in the expansion 
parameter which is now given by 1/ f=  1/( N + 2 1 -  a ) .  The new parameter ‘a’ is chosen 
by physical arguments and is found to depend linearly on the particle level. Con- 
sequently, the shifted I /  N expansion entails a drastic improvement on the convergence 
of the energy series. 

In  this comment, we do not purport to introduce any new idea. Our main goal will 
be to report that the energy eigenvalues of the a tractive radial Gaussian potential 
calculated within the framework of the shifted 1 / N  expansion are in fair agreement 
with the numerical and perturbative results. We furthermore show that the shifted 
1/ N expansion is a much better approximation than the unshifted one, particularly 
for the higher particle levels. We follow the method of Imbo et al (1984). 

The radial part of the N-dimensional Schrodinger equation is given by 

+ V ( r )  R ( r ) = E R ( r ) ,  (1) I [ -%($+?$)+ I ( / +  N - 2 )  
2r2 

which on substituting R ( r )  = r - ( N - ’ ) ’ 2 u (  r ) ,  reduces to the effective one-dimensional 
equation 

h‘ d2 ( k - l ) ( k - 3 )  
2m dr’ 

where k = N +21. Equation ( 2 )  is the starting point in the unshifted I /  N expansion, 
whereas in the shifted 1 / N  expansion one has to introduce an additional parameter 
‘a’  in terms of which equation ( 2 )  now reads 

u ( r )  = Eu(r) ,  ( 3 )  
[ 1 - ( 1 - a )/ f ]  [ 1 - ( 3  - a )/ E ]  -- 

4r2 

where f = ( N  + 2 1 -  a ) ,  Q( r )  = V (  r ) / R  and the units have been chosen so that h = 2m = 
1 .  In the limit of large E( N + a) the energy eigenvalue to leading order is given by 

E, = P (  1/4ri+ ?(ro) ) ,  ( 4 )  

where ro is to be obtained by minimising the effective potential V,, = ( 1 / 4 r i +  ?( r , ) ) .  
Quantum fluctuations around the classical minjmum can be incorporated in the higher- 
order corrections for which one defines x = ( J f / r o ) (  r - ro) .  Then on expanding around 
x = 0 and making use of the equation for r,, equation ( 3 )  becomes, after rearranging 
the terms, 

( 5 )  (-d2/dx2+iw2x2+ E,+ ?(x))*(x) = A?P(x), 

where 

w = ( 3  + r, V”( ro) /  V‘( r O ) ) ’ l 2 ,  

f ( 2 - a )  ( 1 - a ) ( 3 - a )  r i fV(ro )  
EO=-- -  + 

4 2  
+ 

4 f  ( N  + 2 1 -  a)” 

Er2 
k ’  

A = d  
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and 

?( X 

with 

E1 = 

1 -- - 
E112 

(9) 

= $+ r: v””(rO)/24P;  8 i - - -  - :(I - a ) ( 3 - a ) ,  62 = $( 1 - a ) ( 3  - U ) ,  
(10) a3 = 2(2 - a ) ,  

66 = :+ r ~ ~ ” ” ” ( r , , ) / 7 2 0 P .  

Now applying the fourth-order Rayleigh-Schrodinger perturbation theory to the pertur- 
bed harmonic oscillator (6) and arranging terms in the series for E in powers of l /E, 
we obtain, for N = 3 (which is the dimension of interest) 

a4 = - 2( 2 2 - a ) ,  = -:+ r ~ ~ ” ” ’ ( r ~ ) / 1 2 0 P ,  

cc 

E =  c E ” E ( ” ’  
n = - 2  

+ ( ( l - a ) ( 3 - a )  +- (1+2n)  E, + 3(1+2n+2n2)  E4 

-7 [ E:+ 6( 1 + 2n)ElE3+ (1 1 + 30n + 30n2)E:] 

4 r i  r: 

1 
wro 

+ ( [( 1 + 2n) g2 + 3 ( 1 + 2 n + 2 n 2 )  s’, + 5(  3 + 8 n + 6 n 2  + 4n3) s”,] 
(3+21-a )  r i  
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where 

The above expression with a = 0 gives the energy in the unshifted 1/ N expansion, 
with the corresponding classical minimum r, given by 

In the shifted version of the formalism, ‘a ’  is to be chosen from the condition 

which then leads to the equation for determining ‘a’ 

a = 2 - ( 2 n  + 1)w. (14) 

Next substituting (14 )  and (6 )  in the equation for rn in the shifted 1 /  N expansion, we 
obtain 

[2r i  V’( r0)I1’* - ( 2 n  + 1) ( 3 + ~ r O v ; ; y 2  = (21 + 1).  

Once rn is determined, the rest of the calculations become quite straightforward. 
The method delineated above can readily be applied to the attractive radial Gaussian 

potential V( r) = - A  e-*r2. For the purpose of comparison with the works of various 
authors we set A = 400, A = 1. In this case (12) and (15) read respectively 

40rt  exp(-r$2) = (3 +21),  

and 

40r i  exp(-r i /2) - (2n+1)(4-2r; )”*= (21+ 1). ( 1 5 0 )  

We have calculated the energies both in the unshifted and the shifted 1/N 
expansions (see table 1). It is apparent from the results depicted in table 1 that for 
n = O  states the unshifted 1/N expansion is on par with the shifted l / N  expansion 
and  proves to be an  excellent approximation. However, as n increases, the accuracy 
of the unshifted 1/  N expansion deteriorates appreciably. This is not a little surprising 
in view of the fact that while E(“)’s involve positive powers of n, r, and 1/ k in the 
unshifted 1/N expansion d o  not. The shifted 1/N expansion on the other hand is 
found to yield fairly accurate results even for large n and  1. However, for states very 
close to the continuum, the shifted 1 /  N expansion too, to the order considered in this 
comment, cannot claim its efficacy. It fails to predict, for instance, that n = 7, I = 0 is 
a bound state as dictated by the accurate numerical work (Crandall 1983) and  the 
hypervirial Pad6 analysis (Lai 1983). This clearly shows that as one goes u p  the 
potential well, the shape of the potential becomes increasingly important. Hence to 
improve the situation for the bound states lying close to the continuum one should 
probably include more higher-order terms in l / E  This is a rather tedious, albeit 
straightforward, job  and has not been attempted in the present work. 
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Table 1. Energy eigenvalues, -En. First line, shifted 1 /N expansion; second line, unshifted 
1/ N expansion; third line, hypemirial-Pad6 analysis (Lai 1983); fourth line, numerical 
result (Crandall 1983). 

n '  0 1 

341.8952 304.4629 
341.8952 304.4628 
341.8952 304.4628 
341.8952 304.4628 

269.6457 235.4513 
269.6415 235.4465 
269.6445 235.4500 
269.6445 235.4500 

203.9969 173.2573 
203.9306 173.1802 
203.9835 173.2443 
203.9835 173.2443 

145.4307 118.4320 
145.0832 118.0224 
145.3779 118.3840 
145.3779 118.3840 

94.5817 71.7197 
93.4194 70.3313 
94.4577 71.6236 
94.4577 71.6236 

52.3080 34.1785 
49.2596 30.4652 
52.1436 34.1299 
52.1436 34.1299 

19.8693 7.5643 

19.9663 8.0833 
19.9663 8.0833 

-0.4145 
-15,2660 

1.3467 
1.3473 

0 

1 

2 

3 

4 

5 

12.9244 -1.2173 
6 

7 

L 3 4 5 6 7 

268.1108 
268.1108 
268.1 107 
268.1 107 

202.4324 
202.4270 
202.43 13 
202.43 13 

143.8212 
143.7299 
143.8091 
143.8091 

92.9186 
92.4244 
92.8781 
92.8781 

50.623 1 
48.9152 
50.5677 
50.5677 

18.3249 
13.6072 
18.4404 
18.4404 

- 1.2014 
- 13.0949 

0.1841 
0.2049 

232.8753 
232.8753 
232.8753 
232.8753 

170.6404 
170.6340 
170.6393 
170.6393 

115.7649 
115.6538 
115.7542 
115.7542 

69.0127 
68.3977 
68.9836 
68.9836 

31.5185 
29.3284 
31.5211 
31.5211 

5 2989 

5.6729 
5 6731 

-1.0911 

198.7983 
198.7983 
198.7983 
198.7983 

1 40.1 3 62 
140.1284 
140.135 1 
140.1351 

89.1836 
89.0436 
89.1750 
89.1750 

46.8809 
46.0813 
46.8681 
46.8681 

14.7685 
11.7787 
14.8515 
14.8515 

165.9283 
165.9283 
165.9282 
165.9282 

110.9938 
110.9840 
110,9929 
110.9929 

64.2016 
64.0163 
64.1959 
64.1959 

26.7680 
25.6609 
26.7779 
26.7779 

1.0300 
-3.4467 

1.2949 

134.3227 
134.3227 
134.3226 

83.3068 
83.2935 
83.3060 

40.9905 
40.7278 
40.9887 

9.0798 
7.3964 
9.1259 

104.05 14 
104.0513 
104.0512 

57.1971 
57.1774 
57.1963 

19.8093 
19.3971 
19.8128 
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